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Use of the Nonparametric Nearest Neighbor Approach to Estimate
Soil Hydraulic Properties

Attila Nemes,* Walter J. Rawls, and Yakov A. Pachepsky

ABSTRACT

Nonparametric approaches are being used in various fields to ad-
dress classification type problems, as well as to estimate continuous
variables. One type of the nonparametric lazy learning algorithms, a
k-nearest neighbor (k-NIN) algorithm has been applied to estimate
water retention at —33- and —1500-kPa matric potentials. Perfor-
mance of the algorithm has subsequently been tested against
estimations made by a neural network (NNet) model, developed
using the same data and input soil attributes. We used a hierarchical set
of inputs using soil texture, bulk density (D,), and organic matter
(OM) content to avoid possible bias toward one set of inputs, and
varied the size of the data set used to develop the NNet models and to
run the k-NN estimation algorithms. Different ‘design-parameter’
settings, analogous to model parameters have been optimized. The k-
NN technique showed little sensitivity to potential suboptimal settings
in terms of how many nearest soils were selected and how those were
weighed while formulating the output of the algorithm, as long as
extremes were avoided. The optimal settings were, however, depen-
dent on the size of the development/reference data set. The non-
parametric k-NN technique performed mostly equally well with the
NNet models, in terms of root-mean-squared residuals (RMSRs) and
mean residuals (MRs). Gradual reduction of the data set size from
1600 to 100 resulted in only a slight loss of accuracy for both the k-NN
and NNet approaches. The k-NN technique is a competitive alter-
native to other techniques to develop pedotransfer functions (PTFs),
especially since redevelopment of PTFs is not necessarily needed as
new data become available.

MODELING WATER and solute transport has become an
important tool in simulating agricultural produc-
tivity as well as environmental quality. The use of
models, however, is often limited by the lack of in-
formation on soil hydraulic properties. For many
applications, the estimation of those properties using
PTFs is a feasible alternative to the costly and time-
consuming measurements.

Regression techniques and lately artificial NNets are
two of the most commonly used methods to develop
PTFs. One common feature of today’s PTFs is that they
are all based on the parametric approach, that is, they
are equations with parameters found from fitting those
equations to data, which has several drawbacks. Iden-
tifying the right equation, and ensuring that the asso-
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ciated probability distributions of errors will be similar
across the data space is not always easy. Estimation
results can be heavily biased in case of small sample
sizes. The equations need to be redeveloped and re-
published, should new data become available, and users
are not able to simply include any additional data sets
to improve performance for their site-specific range of
soil properties.

An alternative approach for such estimations could be
the use of nonparametric techniques. Such techniques
are based on pattern-recognition and using similarities
rather than on fitting equations to data. Use of a
nonparametric algorithm is beneficial when the form of
relationship between input and output data is not known
a-priori (Yakowitz, 1993; Lall and Sharma, 1996). Such
is the case with soil hydraulic properties, where the form
of their dependence on other soil attributes is not known
in advance.

Nonparametric methods are being applied in several
fields of hydrology. One of such approaches is the k-NN
approach. The k-NN classification techniques have been
developed and applied in many papers in the fields of
pattern recognition and statistical classification (Dasar-
athy, 1991). The approach can be found in the literature
of many fields besides hydrology, for example, forestry,
plant physiology, virology, molecular biology, entomol-
ogy, zoology, agronomy, and biochemistry. Examples for
applications relevant to hydrologic simulation include
stream flow simulation and disaggregation using nearest
neighbor and kernel methods (Lall and Sharma, 1996;
Sharma et al., 1997; Tarboton et al., 1998; Kumar et al.,
2000; Sharma and O’Neill, 2002, Souza Filho and Lall,
2003), simulation of rainfall using a nonhomogeneous
Markov chain model (Rajagopalan et al., 1996; Sharma
and Lall, 1999; Marshall et al., 2004), simulation of
rainfall spells using a seasonally homogeneous resam-
pling technique (Lall et al., 1996), flood forecasting
(Sankarasubramanian and Lall, 2003), and the simula-
tion of multivariate daily weather sequences (Rajago-
palan et al., 1997; Yates et al., 2003; Harrold et al. 2003a,
2003b; Clark et al.,, 2004). Yakowitz and Karlsson
developed a theoretical basis for using k-NN methods
for time series forecasting and applied them in a
hydrologic context (Karlsson and Yakowitz, 1987,
Yakowitz and Karlsson, 1987; Yakowitz, 1993).

Such approaches have not yet been widely used in stud-
ies related to unsaturated soil hydrology. A similarity-
based k-NN type technique has been applied successfully

Abbreviations: D, bulk density; k-NN, k-nearest neighbor technique;
MR, mean residual; NNet, neural network; OM, organic matter; PTF,
pedotransfer function; RMSR, root-mean-squared residual; SSC,
sand, silt, and clay contents (soil texture); WRC, water retention
curve.
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to interpolate soil particle-size distributions by Nemes
et al. (1999). They found this technique to perform well
while estimating the missing 50-pm particle fraction
for many European soils, which later served as input to
soil hydraulic PTFs. Jagtap et al. (2004) introduced a
dynamic k-NN approach to estimate the drained upper
limit and lower limit of plant water availability from field
measured soil water retention information. They com-
pared their model to existing soil hydraulic PTFs to
make estimations for their data set.

The k-NN technique and many of its derivatives be-
long to the group of ‘lazy learning algorithms’. It is
‘lazy’, as it passively stores the development data set
until the time of application; all calculations are per-
formed only when estimations need to be generated.
Application of this technique means identifying and
retrieving the nearest (most similar) stored objects to
the target object. The quality of such estimations de-
pends on, among others, which objects are ruled to be
the nearest to the target object. One concern is that a
standard k-NN does not perform attribute selection; it
allows irrelevant or interacting inputs to have as much
effect on the distance calculation as any other useful
inputs. Another concern is that some inputs may have a
(considerably) wider range of data than others. A unit
change in one input variable may have much larger
influence on the distance measure than the same change
in the other. Such concerns lead to the introduction of
data normalization systems and different attribute
weighing systems in more recent k-NN variants (e.g.,
Wettschereck et al., 1997).

There are many studies in literature that evaluate and
compare the performance of soil hydraulic PTFs. A lim-
itation of many of such studies is that it remains unclear
what the main sources of the differences in estimation
errors are. It is not clear whether differences between
data sets used to derive PTFs (size, origin, reliability),
differences between the algorithms of PTF development
(e.g., different regression types vs. NNet models) or dif-
ferences among the used input attributes cause a par-
ticular PTF to perform better than others. Many PTF
comparison studies have no particular goal to promote
any particular method or data source over others (e.g.,
Tietje and Tapkenhinrichs, 1993; Kern, 1995; Imam
et al., 1999; Cornelis et al., 2001; Gijsman et al., 2003),
they simply compare the performance of PTFs available
in literature on some specific data. Other studies pro-
mote the advantages of using a particular data set or
method over others (e.g., Pachepsky et al., 1996; Nemes
et al., 2003; Jagtap et al., 2004). When a novel approach
to make estimations is introduced, all other factors (e.g.,
differences in development data and/or inputs used)
should be eliminated to allow reporting any advantage
gained solely due to using the novel approach. The study
of Jagtap et al. (2004) compares the performance of
k-NN estimations to other PTFs that were developed
using different methods, using different data, and using
different input attributes at the same time. The per-
formance of PTFs varies with the pedological origin of
the soils on which they were developed. The effect of
using different data sets on the soil water retention es-

timations has been pointed out by different authors (e.g.,
Rawls et al., 1991; Schaap and Leij, 1998; Minasny et al.,
1999; Nemes et al., 2003), and the effect of using dif-
ferent inputs in PTFs on estimations has been shown by
for example, Schaap et al. (2001) and Nemes et al.
(2003).

The objective of this study was to introduce the k-NN
approach for the estimation of water retention points
and to compare its performance to the performance of
NNet models in terms of estimation accuracy. For the
reasons listed in the previous paragraph, we developed
NNet PTFs using the same data sets and the same inputs
as with the k-NN approach. In this study, we introduce a
relatively simple form of the k-NN approach to examine
the worthiness of this technique for the estimation of soil
hydraulic data.

MATERIALS AND METHODS
Soil Data

There were 2125 soil horizons selected from the U.S. NRCS-
SCS Soil Characterization Database (Soil Survey Staff, 1997),
according to the following criteria: Mineral soil horizons were
selected from the contiguous USA having horizon notation ‘A’,
‘A1’, and ‘Ap’ (and their derivatives), with the condition that
the top of the horizon was at the soil surface. Organic matter
(OM) content of the selected soils was limited to 1 to 15%, and
D, was limited to 0.5 t0 2.0 gcm . Selected soil properties were
the following: sand (50-2000 pm), silt (2-50 wm), and clay
content (<2 wm) according to the USDA classification system
(USDA, 1951), D, OM content and retained (volumetric)
water at —33- and —1500-kPa matric potentials (633 and 61500
respectively), with no missing data allowed in any of the fields.
Such matric potentials were chosen as those are often used to
approximate field capacity and wilting point when calculating
plant available water, and thus are often preferred points in
water retention curve (WRC) determinations in the laboratory.
Measured WRC data at those matric potentials can be found
frequently in many soil hydraulic databases worldwide. The
2125 size data set excludes any entries that showed obvious
inconsistency in physical and/or hydraulic data (sand + silt +
clay # 1; 633 < 61500; {[1 — (D.,)/2.65] — 6 33} < 0).

Table 1 shows the summary statistics of selected soil
attributes of the selected data set. The data set contains data
of a wide range of soils, in terms of the shown soil attributes.
We note the unusually high maximum value for —1500-kPa
water content. Water contents in the NRCS database are
stored as gravimetric water content. Different D, values are
stored in the database- measured at different state of wetness
that have to be used to convert —33 and —1500 kPa gravi-
metric water contents to their respective volumetric water
content values. This resulted in a few large —1500 kPa vol-
umetric water content values in case of some—presumably

Table 1. Summary statistics of selected soil attributes in the source
data set used to develop pedotransfer functions.

Properties Unit MIN MAX AVG SD MEDIAN
USDA sand gg! 0.004 0955 0.280 0.231 0.211
USDA silt gg! 0.034 0922 0.492 0.194 0.491
USDA clay gg! 0.002 0.811 0.228 0.133 0.205
Bulk density gem?  0.520 1.890 1362 0.186 1.380
Organic matter % 1.000 14861 3.082 2.063 2.500

0 (—33 kPa) mm> 0.051 0.724 0316 0.083 0.325
0 (—1500 kPa) mm>* 0.022 0.714 0.171 0.094 0.153
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swelling—soils with high clay content. We converted gravi-
metric water contents to volumetric water contents to remain
compatible with most existing PTFs.

The data set has been used as development data as well as to
provide data to test the estimations. Samples have been
randomly drawn to be either member of the development data
set (reference data set for the k-NN technique) or of the test
data set. We elected to use 435 samples as test data. We used
different sizes of development/reference data sets to evaluate
the effect of the size of the development data set on the two
methods that are compared. Samples were drawn to be mem-
bers of development/reference data sets of 100, 200, 400, 800,
and 1600 samples. All random data selections have been
repeated 200 times to allow the development of an ensemble
of PTF estimations. By using a sufficiently large number of
replicates one can minimize the impact of any single replicate
(i.e., any particular data set division) on the final estimation
results. It has been pretested that, for this application, using
200 replicates is sufficient to make the effect of any single
replicate on the estimations insignificant. That number, how-
ever, has not been minimized/optimized. Statistical measures
in this study to evaluate and compare the two methods are thus
based on 200 replicates using each method. Development of
such ensemble of estimations has a notable advantage over
single PTF estimations, that is, the uncertainty of estimates can
be quantified, which can then be subject to statistical analyses
and/or be inputted into simulation models.

Rawls et al. (1991) and Wosten et al. (2001) lists the input
attributes used by many PTFs. We have chosen to use inputs
that are most often used by different authors: sand, silt, and
clay content (SSC), D, and OM content. We assumed that they
are all equally relevant and important in the estimation of the
output attributes. Four different sets of input attributes were
used to estimate water retention at two different matric po-
tentials (—33 and —1500 kPa) from data of the NRCS data set.
The simplest model used only SSC as predictors. In the fol-
lowing two models, either Dy, or OM content was added to
SSC as a predictor. In the fourth model all of these inputs were
used as predictors. This is to avoid a possible bias while ap-
plying one particular set of input attributes, and to account for
the situation of different levels of data availability for potential
future use or comparisons.

The k-Nearest Neighbor Technique

Unlike classic PTFs, the k-NN technique does not use any
predefined mathematical functions to estimate a certain at-
tribute. A ‘reference’ data set—analogous to the development
or training data sets used to develop classic PTFs—is searched
for soils that are most similar to the target soil, based on the
selected input attributes. Apparently, performance of such
technique largely depends on the goodness of selection of the
‘most similar’ (nearest) soils. In most k-NN studies, the ‘dis-
tance’ measure is calculated as the classical Euclidean distance
between the target and the known instances. In a simple case,
with only two input attributes, for example, sand and clay
content, selection of the nearest (or most similar) soil(s) can
be represented geometrically using Pythagoras’ theorem, as
demonstrated by Jagtap et al. (2004). The ‘distance’, of each
soil from the target soil can be calculated as the square root of
the sum of squared differences in sand and clay content be-
tween the target soil and each of the soils of the reference data
set. Soils of the reference data set will then be sorted in as-
cending order of their distance from the target soil. The es-
timated value of the output attribute is calculated as the
weighed average of the output attribute of a preselected num-
ber of the nearest soils.

Of course, the above case is largely simplified in several
aspects. One of the factors that need attention is the fact, that
most PTFs utilize information of more than two input attri-
butes. For such cases the generalized form of

(1]

may provide sufficient solution, where d; is the ‘distance’ of the
ith soil from the target soil, and Aa; represents the difference
of the ith soil from the target soil in the jth soil attribute. The
term ‘distance’, does not refer to actual (physical) distance, but
to a measure of similarity; the distance will be smaller for soils
that are more similar to the target soil in their input attributes.

A rightly concern is that a unit difference in one attribute
may not be as significant as the same unit difference in another
attribute, because of differences in the order of magnitude
and/or range of data of the different input attributes. For
example, sand content, if given in a percentage, can take up
values anywhere between 0 and 100, whereas OM content
ranges from 0 to a maximum of 15% in nonorganic soils. A unit
difference in OM is expected to be more significant than the
same unit difference in sand content. To avoid bias toward one
attribute or the other, the data need to be normalized before it
is used to calculate ‘distance’ using Eq. [1]. In this study we first
transformed all input attributes to obtain temporary variables
with distribution having zero mean and standard deviation of 1
using the following transformation:

ienpy = [(@3)—a] /0 (a)) 2]
where a; represents the value of the jth attribute of the ith soil,
a; and o(a;) represent the mean and standard deviation of the
observed values of the jth attribute in the reference data set.
Then, we examined the minimum-maximum range of those
temporary variables, and scaled the temporary variables to
obtain zero mean and the same minimum-maximum range in
the data of all attributes:

. = .. i se e
Qijtransy = Aiempy { MAX [range(a@;-emp)) -+ -»

range(aj-mp)) 1} /range(@jiemy) ) (3]

where a;.mp) Tepresents the data of the jth soil attributes
normalized using Eq. [2]; and ajuwnsy represents the final
transformed value of the jth attribute of the ith soil that are to
be used as input. Certainly, this method is somewhat sensitive
to the potential presence of outliers in any of the attributes,
as that may stretch the min-max range of the particular attri-
bute, values of which may then be somewhat under-weighed
in Eq. [3], compared with the other attributes.

An additional issue that needs to be addressed is the
number of soils (k) to be selected from the reference data set
that are then used to formulate the estimate of the output
attribute of the target soil. It is not straightforward to tell,
whether the closest single soil, the closest two, three, ten,
twenty, or perhaps more will give the most accurate estimate.
To determine the optimal value of k, the leave-one-out cross-
validation technique was used by Lall and Sharma (1996).
They suggested a potential choice of k = n'? for n > 100, based
on their experience under certain conditions, where # is the
number of known instances in the reference data set. They also
note that sensitivity of the technique in terms of an accuracy
measure, the generalized cross validation score, to the choice
of k is small. As we had no prior information about the optimal
k for the presented type of application, optimization of k is
part of the presented research.

Finally, one has to decide how to weigh each selected soil
while forming the estimate of the output attribute, if the
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selected number of soils is more than one. As a solution, the
simple average of their output attribute can be calculated.
However, the calculated ‘distance’ of each soil from the target
(see Eq. [1]) will be different, and it can be argued that a soil
closer to the target should have more weight in calculating the
estimated value for the target. A weighing system that allows
distance-dependent weighing of soils seems to offer an
alternative solution. One of the possible solutions mentioned
in literature is to establish some type of inverse relationship
between such weights and the distance of the target from the
selected nearest neighbors. For example, Lall and Sharma
(1996) applied a system in which weights for each selected
neighbor are calculated as:

1/i
>t

where w, is the weight associated with the ith nearest neigh-
bor and k is the number of neighbors considered. This ap-
proach, however, considers only the rank of each sample in
being the nearest neighbor to the target, and does not consider
the relative distances of the selected k neighbors from the
target. We used a weighing system that accounts for the dis-
tribution of the distances of the selected nearest neighbors
from the target. Weights for each selected neighbor are cal-
culated as:

(4]

We =

k
w; = di(rel) / Zl di(rel) [5]

where k is the number of neighbors considered; w; is the
assigned weight, and d,,., is the relative distance of the ith
selected neighbor, calculated as

k P
di(rel) = (z—Zl di/ di) [6]

where k is the number of neighbors considered; d; is the
distance of the ith selected neighbor calculated using Eq. [1],
and p is a power term that is to be optimized as part of the
present study. The p term is introduced to account for different
possible weight/distance relationships. If p = 1, a simple in-
verse relationship is assumed, p = 2 assumes inverse squared
relationship, etc. We examine what power term (p) could be
best used to convert distance to weight.

The Artificial Neural Network Technique

Recently, artificial NNet models have been used success-
fully in PTF development (e.g., Pachepsky et al., 1996; Tamari
et al., 1996; Schaap et al., 1998; Koekkoek and Booltink, 1999;
Minasny et al., 1999; Schaap and Leij, 2000; Minasny and
McBratney, 2002; Nemes et al., 2003). Most studies found that
the predictive capabilities of NNet PTFs were equivalent or
superior to different regression type PTFs. For this reason, we
have chosen the NNet technique to serve as the basis for
comparison for the newly introduced k-NN technique.

A NNet model consists of many simple computing elements
(termed neurons or nodes) that are organized into subgroups
(layers) and are interconnected as a network by weights. A
model typically consists of an input layer, an output layer, and
one (or more) ‘hidden’ layer(s) that connect(s) the input and
output layers. The number of nodes in the input and output
layers correspond to the number of input and output variables
of the model, the number of hidden nodes can be varied freely.
Data flow goes from the input layer through the hidden
layer(s) to the output layer. A node in the hidden and output

layers receives multiple inputs—typically from all nodes of the
previous layer. Within the node, each input is weighted and
combined to produce a single value as the output of that node,
which is then directed to all the nodes of the next layer, or
outputted if it was a node of the output layer. The weight
matrices are obtained through a calibration (training) proce-
dure, which can then be used to make estimations on inde-
pendent data. For a more thorough description on NNets, we
refer the reader to Hecht-Nielsen (1990) or Haykin (1994).

Following Nemes et al. (2003), we used a three-layer back-
propagation NNet model. As the problem to be solved is
relatively simple we used one hidden layer only. There are
significantly different approaches to set the number of nodes in
the hidden layer. We set it empirically as half of the sum of
input and output variables, rounded up to the nearest integer.
While NNets are able to extract essential information from raw
input data, the resulting networks may be complex and the
required computation times very long. To reduce both, we
transformed all data, before being presented to the NNets, to
take up the interval [0,1].

The NNets were combined with the data selection
procedure of the bootstrap method (Efron and Tibshirani,
1993) to generate internal calibration-validation data set pairs
for an early stopping procedure. The bootstrap method is a
nonparametric technique that simulates alternative (replica)
data sets out of a single data set. Given a data set of size N, the
bootstrap method generates replica data sets, also of size N, by
random selection with replacement. Some samples are
included more than once, while others are not selected into a
particular replica data set. The replica data set is used to
calibrate the NNet model while data not in the replica data set
are used for validation to stop the calibration process when a
minimum error is reached. Multiple realizations of subsets can
help to avoid bias toward any particular calibration-validation
data set pairs. We generated 10 replica data sets, each of which
was used to calibrate the NNet models, which procedure
provided 10 ‘subestimates’, that could be slightly different
from each other. The estimate of a PTF from one particular
data set—for each value—was then calculated by averaging
the 10 subestimates of the value. Application of the bootstrap
technique took place internally in the NNet program to derive
the best estimates from each development data set, and was
performed independently within each of the 200 PTF
ensembles described before. All NNet modeling was per-
formed using the Neural Network Toolbox in MATLAB
(Demuth and Beale, 1992).

Evaluation Criteria

First, we optimized two design-parameters of the k-NN
technique, such as the number of selected soils (k) and the
power term applied in the weighing system (p). In this phase,
different k-NN ‘models’ were compared with each other, but
not to any NNet models. We used only one performance
measure for such purposes, the RMSR of the estimations,
which is calculated as

N
RMSR = \/ ¢! /N);(e,-—é,-)z (7]

where N is the number of estimated and measured values, 6
and 6 are measured and estimated water contents, respectively.

Once the optimal setup for the k-NN technique has been
found, we used the k-NN model(s) with the optimal settings as
well as the calibrated NNet models to estimate water retention
at —33 and —1500 kPa matric potentials for the test data sets.
Model performance was evaluated using two measures. We



e
()
2
()
(D]
(O]
=
(2]
—

ey

2
fu
>
Q
(@]
(&)
<
o
.0
o
()
S
<

“—
(@)
>
=
Q2
O
(@)
9]
(0]
O
C
Q
O
(5}
©
(5}
>
o]
O
(O]
<
0
o
>
o
©
c
=
>
o
=S
4]
.0
fu
(O]
S
<
“—
(@)
>
=
2
O
[e]
(5}
(0]
(&)
c
2
O
(5}
©
9p]
IS
(@)
=
=)
o
(0]
(&)
>
e
(@)
=
(o}
(0]
o

NEMES ET AL.: NONPARAMETRIC APPROACH AND SOIL HYDRAULIC PROPERTIES 331

used the MRs as well as the above-defined RMSR to compare
the estimation accuracy of the different models. The MR can
quantify systematic errors between measurements and estima-
tions and the RMSR can give the accuracy of the estimations in
terms of standard deviations. The MR is calculated as

N
MR = (1/N) 21 (0,6, 8]
iz
where all variables are the same as defined in Eq. [7] above.

RESULTS
Optimizing the k and p Terms

We first optimized two design-parameters of the k-NN
technique that were introduced in the Materials and
Methods section. One of the parameters was the number
of soils, k, to be selected from the reference data set that
are then used to formulate the estimate of the output
attribute of the target soil. The other parameter was the
p term introduced in Eq. [6], which is used to weigh each
of the selected k soils while forming the estimate of the
output attribute.

We searched for the optimal parameter settings by
gradually changing both of the above parameters in the
algorithm and making estimations for the test data set
using data of the reference data set. We assigned values
to parameter k from 1 to 50, with increments of 1 and
parameter p has been varied between 0 and 3, with
increments of 0.1. To avoid possible bias toward one or
another input attribute set, we used all four levels of
input information to estimate both output attributes
(633 and 61500) and averaged their RMSR. Figure 1
shows the average RMSR values obtained using the
different combinations of k£ and p values with the 1600-
sample data set. For this application and this data set,
the technique does not seem to be very sensitive to the
choice of p, differences along p are relatively insignif-
icant. It is not very sensitive to the choice of k either, as

Fig. 1. Three-dimensional representation of the relationship between
the number of selected neighbors, the p term used in weighing the
selected neighbors and the obtained average root-mean-squared
residuals, using 1600 soils for each replicate of estimations.

long as k is above a certain minimum, 8 or 9 in this case.
Choosing zero for p—meaning that no relationship
between distance and assigned weight is assumed—
affects the estimation accuracy negatively, but not in a
very significant manner; it is equally a disadvantage to
over emphasize the influence of the absolute nearest
soil(s) (that is, using large p). Figure 2 shows more
details about the averaged minimum value of RMSR
and the combination of £’s and p’s used to obtain that.
The first contour plot (a) shows the RMSR values. The
minimum value for RMSR was 0.04133 (in m’m~). It

(a)

3.0 ———e
2-5 T é‘;bn:b ”’,‘-——-—-—-
& & & rusR) 004577
3 2.0 h & ‘i'\ g e ———
£ @F-Qi? f, _(RMSR) 0.0418
@ { }“ / x’,
po 151 il
g ;I'g ff
3 1.0 - nS - MIN(RMSR)=0.0413
m - ‘,’
2
1] g | P
051 g\ .
i\ 4 913'
0.0 R i P
0 10 20 30 40 50
Number of neighbors (k)
(b)
3.0
2.5
#4020 - = =
220 s < MINRYSD
= - PPYL p—
E /7 RsR < MINRMSR]
/
: 1-5 1 g-! ,/
4 L
3 1.0 %/ -MIN(RMSR) _J
o * E f ’,,f
= : ,,z
0-5 h f 1 ,’ ,f“
14 \ /7 ,/
w “ y ’
= \ ’/ /,
0.0 . p

0 10 20 30 40 50
Number of neighbors (k)

Fig. 2. Two-dimensional representation of the sensitivity of the k-NN
technique to suboptimal settings in the number of selected
neighbors and the p term used in weighing the selected neighbors
(a) absolute and (b) relative, using 1600 soils for each replicate of
estimations.
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can be seen that for a wide range of k-p combinations
the RMSR does not differ much from the minimum
value. Plot (b) shows that for values of k ranging from 13
to 50, and p ranging from 0 to 1.8, most combinations
yield RMSRs that are only less than 1% off the
minimum RMSR value. The relative insensitivity of a
k-NN model to the choice of k£ has also been found
before for example, by Lall and Sharma (1996) and
Jagtap et al. (2004).

Despite of the insensitivity shown above, one needs to
choose a combination of k and p values to be able to run
this algorithm, and the most logical choice is the one
leading to minimum RMSR. However, such choices may
be affected by the size of the reference data set. For this
reason, we also ran the above analysis for the other
reference data set sizes: 100, 200, 400, 800. We sorted the
combinations of k and p according to the resulting
RMSRs. The k and p values of the best 10 models were
averaged, and are shown for each reference data set size
in Fig. 3. For both parameters we found a decreasing
trend with decreasing data set size. The optimal value of
k changed significantly with data set size. The optimal
value of p, although changed with data set size,
remained between 0.95 and 1.10 for the examined data
set sizes. The obtained values for p were not significantly
different from each other. The fact that values of p
remained around 1 suggests that assuming a simple
inverse relationship between the selected samples’
weight and distance from the target seems to be a safe
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Fig. 3. Effect of data set size on (a) the optimal choice of the number of
selected neighbors, and (b) the p term used in weighing the selected
neighbors.

first approximation for all data set sizes within the ex-
amined range.

We found a power function to provide the best fit
among the known and simple curve forms to describe the
relationship between sample size and each of the two
parameters (Fig. 3). The curves fit the data points well.
Values for k obtained from the fitted curve were
approximately 0.62n'? for all data set sizes that we
have worked with; approximately two-thirds of the val-
ues recommended by Lall and Sharma (1996). For the
sake of simplicity and for future reference we included
the two approximating power functions shown in Fig. 3
into the algorithm to calculate the optimal settings of k
and p. Subsequent calculations were run using these
settings. The optimal value for both parameters were
then calculated from the number of soils in the reference
data set, and rounded to the nearest integer (k) or to the
nearest number with two decimals (p). We note,
however, that the relationships between n, k, and p
were set empirically using our data, and may not be
optimal when the approach is used with other data sets.

Comparison of k-NN and NNet Models

Using the above settings, we ran the k-NN models,
using all five data set sizes, four input attribute sets and
made estimations for the two output attributes. We per-
formed the same estimations on identical data also using
NNet models. Results, in terms of RMSR, are summa-
rized in Table 2. Root-mean-squared residual values are
shown separately for each output attribute, method,
input level and each development data set size. Es-
timations of 61500 are more accurate than of 633. One of
the potential reasons for this is the larger values of 633
on average (Table 1), apart from a few outlying high
values for 61500. Another potential reason for this is
that 633 is more influenced by soil structure than 61500,
and soil structure is only represented in the models in an
indirect way by D,. As described before, these RMSR
values were calculated by averaging 200 values, resulting
from estimations of 200 PTF ensembles each of which
used randomly selected data. There is a slight improve-
ment in the estimations when more input attributes are
used, but the obtained improvement is not statistically
significant at the 0.95 probability level, using any of the
two methods. Estimation accuracy does get worse with
smaller reference data set size, but such differences are,
in many cases, not significant, even between N = 1600
and N = 100. In most cases, as expected, the standard
deviation (SD) of the obtained RMSR became larger
with smaller data set size, indicating that estimation ac-
curacy does get more dependent on the samples selected
into the actual development/reference data set. This
applies for both methods. When the two methods are
compared pair wise, results are very close. In most cases,
the NNet model resulted in smaller average RMSR. The
maximum difference was 0.004 m*m™3, to the advantage
of the NNet model, but there were instances, where the
k-NN algorithm performed somewhat better. However,
there was no single case, where the differences proved to
be statistically significant at the 0.95 probability level.
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Table 2. Summary of results, in terms of root-mean-squared residuals (in m*m3), for the k-Nearest Neighbor technique with optimized
settings and the neural network models. (SSC, sand, silt and clay content; D,, bulk density; OM, organic matter content).

Sample size of the PTF development data set (V)

N = 1600 N = 800 N = 400 N = 200 N =100

Estimated attribute Estimation method Input attribute(s) MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD
Water Retention Nearest Neighbor SSC 0.054 (0.003) 0.054 (0.003) 0.055 (0.003) 0.056 (0.003) 0.058 (0.003)
at —33 kPa SSC + D, 0.051  (0.002) 0.051 (0.002) 0.052 (0.002) 0.054 (0.003) 0.056 (0.003)
SSC + OM 0.051 (0.002) 0.051 (0.002) 0.052 (0.003) 0.053 (0.003) 0.055 (0.003)
SSC + D, + OM  0.050 (0.002) 0.051 (0.002) 0.052 (0.002) 0.053 (0.003) 0.055 (0.003)
Neural Network SSC 0.053  (0.003) 0.053 (0.003) 0.054 (0.003) 0.054 (0.003) 0.055 (0.003)
SSC + D, 0.052  (0.003) 0.052 (0.003) 0.052 (0.003) 0.053 (0.003) 0.054 (0.003)
SSC + OM 0.050 (0.002) 0.051 (0.002) 0.052 (0.003) 0.052 (0.003) 0.054 (0.004)
SSC + D, + OM  0.049 (0.002) 0.050 (0.002) 0.051 (0.002) 0.052 (0.003) 0.054 (0.003)
Water Retention Nearest Neighbor SSC 0.037 (0.002) 0.037 (0.002) 0.038 (0.003) 0.040 (0.003) 0.043 (0.004)
at —1500 kPa SSC + D, 0.035  (0.002) 0.037 (0.002) 0.038 (0.003) 0.040 (0.003) 0.043 (0.004)
SSC + OM 0.035 (0.002) 0.036 (0.003) 0.038 (0.003) 0.040 (0.003) 0.042 (0.004)
SSC + D, + OM  0.035 (0.002) 0.036 (0.002) 0.038 (0.003) 0.040 (0.003) 0.043 (0.004)
Neural Network SSC 0.036 (0.002) 0.037 (0.002) 0.037 (0.002) 0.039 (0.003) 0.039 (0.003)
SSC + D, 0.035 (0.002) 0.036 (0.002) 0.036 (0.002) 0.037 (0.003) 0.040 (0.005)
SSC + OM 0.034  (0.002) 0.035 (0.002) 0.035 (0.002) 0.037 (0.003) 0.039 (0.004)
SSC + D, + OM  0.034 (0.002) 0.035 (0.002) 0.035 (0.003) 0.036 (0.003) 0.039 (0.005)

We evaluated the performance of the models in terms
of bias in the estimates (Table 3). The largest values for
estimation bias were obtained using the NNet technique
to estimate #1500 (MR = —0.007 m’m ), the maximum
bias using the k-NN technique was 0.004 m*m~. In prac-
tically all cases, zero was within one SD of the obtained
bias value, a few exceptions were found for the NNet
technique only. Bias did not get significantly larger with
smaller data set size or with less input used in the models.

Having no significant differences in RMSR and MR
with decreasing data set size and with less input attri-
butes used indicates a large degree of stability of the
k-NN technique, and insensitivity to those factors. Hav-
ing no significant differences in those measures in
comparison with the appropriate NNet models indicates
a good potential to this technique to be applied to es-
timate soil hydraulic properties. Our results, should
however be validated by the application of this tech-
nique to other data sets.

Mean residuals show the extent of overall bias in
the estimations. However, such bias may not be equally

distributed over the input data range; ‘partial’ bias may
exist along some of the input attributes. We examined
the correlations between estimation errors and the in-
put attributes of the models, to reveal any systematic
distribution of the estimation errors along any of the
input attributes that were used. We only show correla-
tions obtained using 1600 samples in the development/
reference data set and SSC, D,, and OM as input
(Table 4). Correlations are shown in terms of R? of
the linear regression between all data pairs. For the
NNet model, R* always remained at or below 0.001,
meaning that the errors are independent from the great-
ness of the inputted values. The k-NN technique showed
somewhat greater R? values, but with one exception,
it still remained under 0.008. The R* value for the cor-
relation of estimation errors with clay content (esti-
mating 61500) is greater but is still small (R* = 0.029).
The analysis resulted in somewhat different values for
other input attribute sets and data set sizes, but those
were comparable in the degree of correlations to the
shown example.

Table 3. Summary of results, in terms of mean residuals (in m*m3), for the k-Nearest Neighbor technique with optimized settings and the
neural network models. (SSC, sand, silt and clay content; D,, bulk density; OM, organic matter content).

Sample size of the PTF development data set (V)

N = 1600 N = 800 N = 400 N =200 N =100

Estimated attribute Estimation method Input attribute(s) MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD
Water Retention Nearest Neighbor SSC 0.000 (0.003) 0.001  (0.003) 0.001  (0.004) 0.001  (0.005) 0.001  (0.006)
at —33 kPa SSC + D, 0.001  (0.003) 0.002 (0.003) 0.003  (0.003) 0.003  (0.004) 0.003 (0.006)
SSC + OM 0.002 (0.002) 0.002 (0.003) 0.003  (0.003) 0.004 (0.004) 0.004 (0.0006)
SSC + D, + OM  0.002 (0.002) 0.003 (0.003) 0.003 (0.003) 0.004 (0.004) 0.004 (0.005)
Neural Network SSC —0.001 (0.003) —0.001 (0.003) 0.000 (0.004) 0.000 (0.005) 0.000 (0.006)
SSC + D, 0.001  (0.004) 0.002 (0.004) 0.001  (0.004) 0.002 (0.005) 0.000 (0.007)
SSC + OM —0.001 (0.003) 0.002 (0.003) 0.003  (0.004) 0.000 (0.005) 0.000 (0.007)
SSC + D, + OM  0.000 (0.003) 0.000 (0.003) 0.000 (0.004) 0.001 (0.004) 0.000 (0.006)
Water Retention Nearest Neighbor SSC 0.001  (0.002) 0.001  (0.002) 0.001  (0.003) 0.001  (0.003) 0.002 (0.004)
at —1500 kPa SSC + D, 0.001  (0.002) 0.001  (0.002) 0.001  (0.003) 0.002 (0.003) 0.002  (0.004)
SSC + OM 0.001  (0.002) 0.002  (0.002) 0.002 (0.003) 0.003 (0.003) 0.004 (0.004)
SSC + D, + OM  0.002 (0.002) 0.002 (0.002) 0.003  (0.003) 0.003 (0.003) 0.004 (0.004)
Neural Network SSC —0.001 (0.002) —0.005 (0.003) —0.002 (0.003) —0.007 (0.005) —0.001 (0.005)
SSC + D, —0.001 (0.002) —0.003 (0.003) —0.002 (0.004) —0.001 (0.004) —0.003 (0.005)
SSC + OM —0.001 (0.002) —0.003 (0.003) —0.001 (0.003) —0.001 (0.004) —0.007 (0.006)
SSC + D, + OM 0.000 (0.002) —0.004 (0.004) —0.002 (0.003) —0.001 (0.003) —0.002 (0.005)
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Table 4. Correlations (R?) between estimation errors and the
various input attributes of the models that were developed from
the data sets with 1600 soils, using soil texture, bulk density and
organic matter content as input.

Nearest Neighbor Neural Network

033 0 1500 033 0 1500

Sand 0.00025 0.00139 0.00004 0.00024

Silt 0.00050 0.00543 0.00003 0.00001

Clay 0.00356 0.02953 0.00033 0.00055

Bulk density 0.00734 0.00001 0.00040 0.00072

Organic Matter 0.00229 0.00094 0.00032 0.00031
DISCUSSION

We introduced and tested a k-NN algorithm to serve
as a soil hydraulic PTFE. Even though the technique is
called nonparametric, it takes advantage of a number of
design-parameters that need to be optimized for the type
of task, before applications. They can be called design-
parameters, as they are determined before and inde-
pendent of applying the algorithm; by application time
they are already built in the algorithm. They reflect
certain user decisions, rather than represent real param-
eters. The number of such parameters and the com-
plexity of such optimization tasks may vary greatly
depending on the type of problem to be solved. We used
a relatively simple algorithm, which we assumed to be
able to make estimations efficiently. We made experi-
ments with two of such design-parameters, the number
of selected nearest neighbors, k, and the weighing be-
tween selected nearest neighbors, in our case repre-
sented by the p term. The performance of the algorithm
did not depend greatly on k£ and p. A wide range of
suboptimal values around the optimal values yielded
only marginal loss in terms of estimation accuracy. There
seems to be no need for the user to readjust such param-
eters to adapt the technique if local soil data are added.
Within reasonable limits, having suboptimal settings for
k and p would still not result in a major loss in the ac-
curacy of estimations. These settings should, however,
be tested/validated for substantially different data sets.

The optimal settings for design parameters k and p
varied with the size of the reference data set. Given by
the randomized data selection, the distribution of soils in
the smaller data sets was similar to that in the largest
data sets. What changed was the density of data in the
covered data space. Smaller optimal k£ while having a
smaller number of soils in the reference data set in-
dicates that the algorithm gives preference to pick fewer
but locally significant information, rather than a wider
range of ‘general’ information. In the meantime, the
decrease in the optimal value of p seems to balance this
effect. A smaller value of p means that there is—in
relative terms—less weight given to the nearest soils,
compared with soils that are more distant, but were still
selected among the nearest k soils. In practical terms it
means, that from a smaller data set, fewer instances will
be selected, but those are balanced more equally. It is
the opposite for larger data sets. This indicates that the
best choice algorithm settings do not prefer going too
local and specific to allow, potentially, only the influence
of a single instance on the output value. Results con-

firmed (Fig. 1) that selecting a single soil as accountable
nearest neighbor (i.e., k = 1) leads to unreliable es-
timations, and should therefore be avoided.

To define the influence of each selected soil in de-
riving the final output of the algorithm, some type of
weighing was needed. Lall and Sharma (1996) intro-
duced a ‘rank based’ weighing system within the selected
neighbors (Eq. [4]). Application of their method means
that for each query, the nearest pick from the reference
data set will always have the same weight, the second
nearest will have a smaller, but similarly set value,
etc., given that the number of selected neighbors, k, is
not changed in the meantime. We introduced a different
system that does consider the actual distances, d, of the
selected neighbors. Such system allows case-by-case
weighing. The difference between our system and that
of Lall and Sharma (1996) is not expected to be large in
localities where the data space is densely populated, but
may be larger in the data space where known instances in
the reference data set are scarce. We did not compare
the two systems, but believe that the k-NN technique —
if no other differences are applied—would be similarly
insensitive to such differences in design-parameter set-
tings, as it was to other setting changes that we discussed
before. However, in case data density is low in some
parts of the data space, the situation may belong to one
of the extremes the technique can be exposed to, and
we suspect that the performance may significantly differ
locally as a result of the two different weighing systems.

The importance of the input attributes may vary
across the data space. To give an example, a difference
of 1% in OM content may have more significance when
the target soil has 0% OM content, than when it has
10% OM content. Such had been recognized for ex-
ample, by Aha and Goldstone (1992). Researchers have
since proposed numerous variations of k-NN in an effort
to improve its effectiveness on difficult tasks, many of
which involve the use of local attribute weighing sys-
tems. Examples for the application of such systems are
shown in for example, Atkeson et al. (1997) and Howe
and Cardie (1997). Local weighing schemes, where at-
tribute weights can vary from instance to instance or
input value to input value may perform better in some
applications. We think that such variable weights may
depend, in part, on database properties and also on local
data density. Therefore, in this study we used attribute
weights globally, frozen over the entire data space, and
left the issue of variable (local) weights to be the subject
of future research.

We also experimented with the size of the develop-
ment/reference data set. We did not obtain significant
differences in RMSR or MR with smaller reference data
set sizes, which indicate a large degree of stability and
insensitivity of the technique to that matter. When the
user is not in possession of a large data set, the loss in
estimation performance by using a smaller data set with
similar data range does not seem to be significantly
larger than the loss with the ANN technique in the same
situation. This observation however may again be data
set dependent and needs to be tested on alternative
data sets.
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We examined the correlation between estimation er-
rors and the input attributes of the models, to reveal any
systematic distribution of the estimation errors along any
of the input attributes. In case significant ‘partial’ bias
exists, one should introduce additional adjustments to
the estimations to compensate for that. Estimation er-
rors were not significantly biased (systematic) along any
of the input attributes. Having small or no correlations
between those variables mean that the estimation errors
are distributed independently from the particular input
attributes; there is no ‘partial’ bias in the estimation
procedure. It is indicated that this relatively simple form
of the k-NN approach is capable to produce efficient
estimations in terms of the estimation errors being ran-
domly distributed along the input attributes.

The k-NN technique appears to be a competitive
alternative to other techniques to develop PTFs. The
statistics of the estimations resembled those obtained
using NNet models and, in statistical terms, results did
not significantly differ from each other in practically any
ways that we examined. Such small differences are
unlikely to have significant impact on simulation results
that use one water retention estimate or the other. In an
earlier study, Nemes et al. (2003) found simulation
results to be only marginally affected by more significant
differences in the soil hydraulic input data.

An important advantage of this nonparametric
algorithm is that, should new data become available,
the user is able to include those in the reference data set
without the need to redevelop or republish any
equations or calculation matrices developed from the
original data set. A user will presumably be able to
improve estimations for specific local data by incorpo-
rating existing local information in the reference data
set, without affecting estimations for other sections of
the data space. Such would be the case, for instance, if
soils with sandy clay texture would be added to most
data collections originating from areas of temperate
climate zones. One may include data of a set of locally
specific sandy clay soils originating from tropical areas,
and still use the same temperate climate data set for
estimations. Given by the design of the k-NN technique,
addition of sandy clay soils will have impact only locally
in the sandy clay (and potentially closely neighboring
part of the) data space, without causing alteration or
degradation in performance for other textural types.
Data density is improved locally in the data space. If
estimations are made for new sandy clay instances, the
nearest soils will be found among the soils that did not
preexist in the original data set, but were added later by
the local user. For soils with other texture, the original
data set will provide the same estimations as before. If
the same situation is encountered with parametric PTFs,
the local user either needs to develop his/her own in-
dependent PTF—for which there may not be enough
data—, or needs to add the data and redevelop/readjust
the original PTF. In the latter case, however, addition of
data with differing data characteristics will change the
final form of the relationships between inputs and the
output. Such relationships —that is, the equations of pa-
rametric PTFs—are valid globally, for the entire range

of soils, on which they were developed. This way, esti-
mations made for the entire range of soils are affected
by the addition of some specific (e.g., sandy clay) soils.
Because the k-NN technique performs all estimation cal-
culations real-time, new data can be added to, or if de-
sired, some of the old data be deleted from the reference
data set at any time. In latter case, estimations in the
neighborhood of the data space of the discarded data
might be negatively affected, but we did not test that in
the present study. It has to be considered, however, that
if a data set is changed, the previously optimized k and p
values may no longer be optimal. While a small change
or update in a data set is not expected to change the
optimal k and/or p significantly, substantial change to
the data set may cause the optimal k and p values to shift
significantly. However it is pointed out in Fig. 2 that, at
least for this data set, a large variation in k and p values
resulted in only an insignificant loss in RMSR.

Points of potential future research include use and
comparison of more advanced weighing systems for the
entire model globally, or the application of local weigh-
ing schemes for different parts of the data space. We also
recommend experimenting with other data sets, primar-
ily the application of the technique to soils that originate
from different data distribution than the reference data
set; and testing the settings of the k and p parameters for
other data sets. Dependence of estimation accuracy and
uncertainty on actual distance (d) between the target
and its nearest neighbors could also be examined, to
have a better understanding of potential limitations to
this algorithm in practice. Larger distances would be
experienced for soils that are underrepresented in the
reference data set.

CONCLUSIONS

A k-NN type algorithm has been introduced to make
estimations of water contents at —33- and —1500-kPa
matric potentials. The performance of the approach has
been compared with NNets that were developed using
the same data and inputs. The k-NN technique provided
estimation statistics, in terms of RMSR and MR that
were not significantly different from those obtained
using NNets. Performance of the technique —similarly to
NNets—showed little sensitivity to using different input
attribute sets, or decreased data set sizes used to make
the estimations, as well as to certain design-parameter
settings. The k-NN technique provides an efficient
tool for estimating missing soil water retention data for
use in applications in different fields. Literature lists a
number of advantages of using such non-parametric ap-
proaches over parametric approaches. Our study sug-
gests that to obtain those advantages the user would not
necessarily have to compromise estimation accuracy.
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